Package: rnnmf 0.3.0

rnnmf: Regularized Non-Negative Matrix Factorization

A proof of concept implementation of regularized non-negative matrix factorization optimization. A non-negative matrix factorization factors non-negative matrix Y approximately as L R, for non-negative matrices L and R of reduced rank. This package supports such factorizations with weighted objective and regularization penalties. Allowable regularization penalties include L1 and L2 penalties on L and R, as well as non-orthogonality penalties. This package provides multiplicative update algorithms, which are a modification of the algorithm of Lee and Seung (2001) <http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf>, as well as an additive update derived from that multiplicative update. See also Pav (2004) <doi:10.48550/arXiv.2410.22698>.

Authors:Steven E. Pav [aut, cre]

rnnmf_0.3.0.tar.gz
rnnmf_0.3.0.zip(r-4.5)rnnmf_0.3.0.zip(r-4.4)rnnmf_0.3.0.zip(r-4.3)
rnnmf_0.3.0.tgz(r-4.4-any)rnnmf_0.3.0.tgz(r-4.3-any)
rnnmf_0.3.0.tar.gz(r-4.5-noble)rnnmf_0.3.0.tar.gz(r-4.4-noble)
rnnmf_0.3.0.tgz(r-4.4-emscripten)rnnmf_0.3.0.tgz(r-4.3-emscripten)
rnnmf.pdf |rnnmf.html
rnnmf/json (API)

# Install 'rnnmf' in R:
install.packages('rnnmf', repos = c('https://shabbychef.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/shabbychef/rnnmf/issues

On CRAN:

3.48 score 4 scripts 4 exports 2 dependencies

Last updated 16 days agofrom:b818c932e0. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:aurnmfgaurnmfgiqpmmurnmf

Dependencies:latticeMatrix

An Iterative Algorithm for Regularized Non-negative Matrix Factorizations

Rendered fromrnnmf.Rnwusingknitr::knitron Nov 04 2024.

Last update: 2024-10-31
Started: 2024-10-24