Package 'epsiwal'

Title: Exact Post Selection Inference with Applications to the Lasso
Description: Implements the conditional estimation procedure of Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of a normal random vector subject to linear constraints.
Authors: Steven E. Pav [aut, cre]
Maintainer: Steven E. Pav <[email protected]>
License: LGPL-3
Version: 0.1.0
Built: 2024-12-28 05:55:14 UTC
Source: https://github.com/shabbychef/epsiwal

Help Index


ci_connorm .

Description

Confidence intervals on normal mean, subject to linear constraints.

Usage

ci_connorm(
  y,
  A,
  b,
  eta,
  Sigma = NULL,
  p = c(level/2, 1 - (level/2)),
  level = 0.05,
  Sigma_eta = Sigma %*% eta
)

Arguments

y

an nn vector, assumed multivariate normal with mean μ\mu and covariance Σ\Sigma.

A

an k×nk \times n matrix of constraints.

b

a kk vector of inequality limits.

eta

an nn vector of the test contrast, η\eta.

Sigma

an n×nn \times n matrix of the population covariance, Σ\Sigma. Not needed if Sigma_eta is given.

p

a vector of probabilities for which we return equivalent ημ\eta^{\top}\mu.

level

if p is not given, we set it by default to c(level/2,1-level/2).

Sigma_eta

an nn vector of Ση\Sigma \eta.

Details

Inverts the constrained normal inference procedure described by Lee et al.

Let yy be multivariate normal with unknown mean μ\mu and known covariance Σ\Sigma. Conditional on AybAy \le b for conformable matrix AA and vector bb, and given constrast vector etaeta and level pp, we compute ημ\eta^{\top}\mu such that the cumulative distribution of ηy\eta^{\top}y equals pp.

Value

The values of ημ\eta^{\top}\mu which have the corresponding CDF.

Note

An error will be thrown if we do not observe AybA y \le b.

Author(s)

Steven E. Pav [email protected]

References

Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. "Exact post-selection inference, with application to the Lasso." Ann. Statist. 44, no. 3 (2016): 907-927. doi:10.1214/15-AOS1371. https://arxiv.org/abs/1311.6238

See Also

the CDF function, pconnorm.

Examples

set.seed(1234)
n <- 10
y <- rnorm(n)
A <- matrix(rnorm(n*(n-3)),ncol=n)
b <- A%*%y + runif(nrow(A))
Sigma <- diag(runif(n))
mu <- rnorm(n)
eta <- rnorm(n)

pval <- pconnorm(y=y,A=A,b=b,eta=eta,mu=mu,Sigma=Sigma)
cival <- ci_connorm(y=y,A=A,b=b,eta=eta,Sigma=Sigma,p=pval)
stopifnot(abs(cival - sum(eta*mu)) < 1e-4)

Exact Post Selection Inference with Applications to the Lasso.

Description

Exact Post Selection Inference with Applications to the Lasso.

Details

This simple package supports the simple procedure outlined in Lee et al. where one observes a normal random variable, then performs inference conditional on some linear inequalities.

Suppose yy is multivariate normal with mean μ\mu and covariance Σ\Sigma. Conditional on AybAy \le b, one can perform inference on ημ\eta^{\top}\mu by transforming yy to a truncated normal. Similarly one can invert this procedure and find confidence intervals on ημ\eta^{\top}\mu.

Legal Mumbo Jumbo

epsiwal is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

Note

This package is maintained as a hobby.

Author(s)

Steven E. Pav [email protected]

References

Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. "Exact post-selection inference, with application to the Lasso." Ann. Statist. 44, no. 3 (2016): 907-927. doi:10.1214/15-AOS1371. https://arxiv.org/abs/1311.6238

Pav, S. E. "Conditional inference on the asset with maximum Sharpe ratio." Arxiv e-print (2019). http://arxiv.org/abs/1906.00573


News for package 'epsiwal':

Description

News for package ‘epsiwal’

epsiwal Initial Version 0.1.0 (2019-06-28)

  • first CRAN release.


pconnorm .

Description

CDF of the conditional normal variate.

Usage

pconnorm(
  y,
  A,
  b,
  eta,
  mu = NULL,
  Sigma = NULL,
  Sigma_eta = Sigma %*% eta,
  eta_mu = as.numeric(t(eta) %*% mu),
  lower.tail = TRUE,
  log.p = FALSE
)

Arguments

y

an nn vector, assumed multivariate normal with mean μ\mu and covariance Σ\Sigma.

A

an k×nk \times n matrix of constraints.

b

a kk vector of inequality limits.

eta

an nn vector of the test contrast, η\eta.

mu

an nn vector of the population mean, μ\mu. Not needed if eta_mu is given.

Sigma

an n×nn \times n matrix of the population covariance, Σ\Sigma. Not needed if Sigma_eta is given.

Sigma_eta

an nn vector of Ση\Sigma \eta.

eta_mu

the scalar ημ\eta^{\top}\mu.

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x] otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

Details

Computes the CDF of the truncated normal conditional on linear constraints, as described in section 5 of Lee et al.

Let yy be multivariate normal with mean μ\mu and covariance Σ\Sigma. Conditional on AybAy \le b for conformable matrix AA and vector bb we compute the CDF of a truncated normal maximally aligned with η\eta. Inference depends on the population parameters only via ημ\eta^{\top}\mu and Ση\Sigma \eta, and only these need to be given.

The test statistic is aligned with yy, meaning that an output p-value near one casts doubt on the null hypothesis that ημ\eta^{\top}\mu is less than the posited value.

Value

The CDF.

Note

An error will be thrown if we do not observe AybA y \le b.

Author(s)

Steven E. Pav [email protected]

References

Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. "Exact post-selection inference, with application to the Lasso." Ann. Statist. 44, no. 3 (2016): 907-927. doi:10.1214/15-AOS1371. https://arxiv.org/abs/1311.6238

See Also

the confidence interval function, ci_connorm.


ptruncnorm .

Description

Cumulative distribution of the truncated normal function.

Usage

ptruncnorm(
  q,
  mean = 0,
  sd = 1,
  a = -Inf,
  b = Inf,
  lower.tail = TRUE,
  log.p = FALSE
)

Arguments

q

vector of quantiles.

mean

vector of means.

sd

vector of standard deviations.

a

vector of the left truncation value(s).

b

vector of the right truncation value(s).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x] otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

Value

The distribution function of the truncated normal.

Invalid arguments will result in return value NaN with a warning.

Note

Input are recycled as possible.

Author(s)

Steven E. Pav [email protected]

References

Hattaway, James T. "Parameter estimation and hypothesis testing for the truncated normal distribution with applications to introductory statistics grades." BYU Masters Thesis (2010). https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=3052&context=etd

Examples

y <- ptruncnorm(seq(-5,5,length.out=101), a=-1, b=2)